Acute Oliguria

Chavasak kanokkantapong
Oliguria and Anuria

• Oliguria
 - Decreasing in urine volume less than that required for excretion of normal daily metabolic function.
 - In adult < 400 ml/day.

• Anuria
 - Absence of urine output or < 50 ml/day
 - Indicate obstruction of urinary tract.
 - Rarely from renal infarction or renal cortical necrosis.
Acute Oliguria

• Definition: < 400 ml of urine / day
• The most earliest sign of ARF.
• Identify reversible causes leading to decreasing in high morbidity and mortality of ARF.
• Complication of acute oliguria
Complication of ARF
<table>
<thead>
<tr>
<th>Approximate Serum [K⁺] (mEq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
</tbody>
</table>

Note

- A: Normal range
- B: Mild hyperkalemia
- C: Moderate hyperkalemia
- D: Severe hyperkalemia
- E: Very severe hyperkalemia
Inpatient Mortality - ARF

Dialysis
No Dialysis

JASN 17:1143, 2006

เอกสารประกอบการเรียนการสอนนักศึกษาแพทย์ รพ.มหาวิทยาลัยรามคำแหง
Acute VS Chronic renal failure

• Anemia (Anemia of chronic disease)
• History of chronic symptom
• Small size of both kidneys by ultrasonography
• “Board” cast from urine analysis
• Renal osteodystrophy(rare)
RIFLE Criteria

- Risk
- Injury
- Failure
- Loss
- End stage kidney disease
RIFLE

<table>
<thead>
<tr>
<th>Criteria</th>
<th>sCr</th>
<th>UOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of renal injury</td>
<td>0.3 mg/dl increase</td>
<td>< 0.5 ml/kg/hr for > 6 h</td>
</tr>
<tr>
<td>Injury to the kidney</td>
<td>2 X baseline</td>
<td>< 0.5 ml/kg/hr for > 12h</td>
</tr>
<tr>
<td>Failure of kidney function</td>
<td>3 X baseline OR
 > 0.5 mg/dl increase if
 $S_{Cr} >= 4$ mg/dl</td>
<td>Anuria for > 12 h</td>
</tr>
<tr>
<td>Loss of kidney function</td>
<td>Persistent renal failure for > 4 weeks</td>
<td></td>
</tr>
<tr>
<td>End-stage disease</td>
<td>Persistent renal failure for > 3 months</td>
<td></td>
</tr>
</tbody>
</table>

Acute Kidney Injury Network Criteria

<table>
<thead>
<tr>
<th>Stage</th>
<th>Creatinine Criteria</th>
<th>UOP Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>↑SCr ≥ 0.3 mg/dL or ↑SCr ≥ 150-200%</td>
<td>< 0.5 mL/kg/hr for > 6 hr</td>
</tr>
<tr>
<td>2</td>
<td>↑SCr > 200-300%</td>
<td>< 0.5 mL/kg/hr for >12 hr</td>
</tr>
<tr>
<td>3</td>
<td>SCr ≥ 354 µmol/L + acute ↑≥44 µmol/L in ≤24hr or RRT initiated</td>
<td>< 0.3 mL/kg/hr for 24 hr or anuria for 12 hr</td>
</tr>
</tbody>
</table>
Acute renal failure

- Abrupt reduction in renal function
- Resulting in azotemia (Increasing of BUN)
- Usually classified according to
 - Pre-renal (Decrease renal blood flow)
 - Renal parenchyma (Intrinsic renal)
 - Post-renal (Obstruction)
Pre-renal
Decrease renal blood flow

Intrinsic renal

Post-renal
Obstruction

Decrease renal blood flow

Front View of Urinary Tract

Kidney

Ureter

Bladder

Sphincter

Intrinsic renal

Obstruction

เอกสารประกอบการเรียนการสอนนักศึกษาแพทย์ รพ.มหาวิทยาลัยราชภัฏสุโขทัย
Pre-renal Failure

• Hypovolemia
 - hemorrhage, GI fluid loss, 3rd spacing, renal loses, trauma, surgery, burns

• Relative hypovolemia (effective volume)
 - sepsis, hepatic failure, anaphylaxis, vasodilator drugs, nephrotic syndrome, anesthetic agents
Pathophysiology of Pre-renal Azotemia

- Decrease in renal blood flow
- Compensatory renal afferent arteriolar vasoconstriction.
- Resulting in decrease of GFR.
- Increase reabsorption of sodium, water, and urea.

Urine Na < 20 mEq/L and FE Na < 1%
BUN/Cr ratio > 20:1
Urine osmolality > 500 mOsm/L
Normal urinalysis.
Pre-renal
Decrease renal blood flow

Intrinsic renal

Post-renal
Obstruction

Front View of Urinary Tract

Kidney

Ureter

Bladder

Sphincter

Urethra

Decrease renal blood flow

Intrinsic renal

Obstruction

เอกสารประกอบการเรียนการสอนนักศึกษาแพทย์ รพ.มหาวิทยาลัยราชภัฏอ่างทอง
Intrinsic renal

- **Vasular**
 - TTH/HUS, Chol emboli, Malignant HT

- **Glomerular**
 - PSGN

- **Tubulo-interstitium**
 - ATN, AIN, Obstruction
Intrinsic-renal ARF

Acute tubular necrosis

• Ischemia
• Nephrotoxic ie

• Tubular necrosis leads to sloughing renal tubular cell into lumen.
• Obstruction urinary flow, contributing to reduction in GFR.
• Dysfunction of tubular cell leads to diluted urine, high urinary sodium, and isostenuria.
Intrinsic -renal ARF

• Acute glomerulonephritis
 - Proteinuria, hematuria, Rbc cast.

• Acute interstitial nephritis
 - Sterile pyuria, eosiophilia, eosiophiluria.

• Ateriolar injury
 - Accelerated hypertension, Vasculitis,
 Microangiopathic (thrombotic thrombocytopenic
 purpura, hemolytic-uremic syndrome)

• Cholesterol emboli
Pre-renal
Decrease renal blood flow

Intrinsic renal

Post-renal
Obstruction

Front View of Urinary Tract

Decrease renal blood flow

Intrinsic renal

Obstruction
Post-renal ARF

- Generally must involve in collecting system of both kidneys or in solitary kidneys.
- Obstruction should be considered in acute anuric patient, history of polyuria alternating with oliguria.

Prostate enlargement, Tumor, Stone, Urethral stricture, Massive crystal deposition (uric acid, acyclovia)
Acute Renal Failure

- Prerenal ARF
 - Acute tubular necrosis

- Intrinsic ARF
 - Acute interstitial nephritis
 - Acute GN

- Postrenal ARF
 - Acute vascular syndromes
 - Intratubular obstruction
Initial diagnostic tools in AKI

- History and Physical exam
- Detailed review of the chart, drugs administered, procedures done, hemodynamics during the procedures.
- Urinalysis
 - SG, PH, protein, blood, crystals, infection
- Urine microscopy
 - casts, cells (eosinophils), urine lytes
- Renal imaging US
- Markers of CKD
 - iPTH, size<9cm, anemia, high phosphate, low bicarb
- Renal biopsy
Diagnostic test

- Serum creatinine
 - typical increase 1-2 mg/dl/day
 - Increase >5mg/dl/day suggestive rhabdomyolysis
- BUN/Scr ratio (normal 10-20:1)
 - Increase > 20:1 suggestive dehydration(prerenal), upper gastrointestinal bleeding, obstructive uropathy(uncommon)
Increase in Creatinine without AKI

- Inhibition of tubular creatinine secretion
 Trimethoprim, Cimetidine, Probenecid

- Interference with creatinine assays in the lab (false elevation)
 cefoxitin, flucytosine
Increase in BUN without AKI

• Increased production
 GI Bleeding
 Catabolic states (Prolonged ICU stay)
 Corticosteroids
 Protein loads (TPN-Albumin infusion)
Urine analysis

• Pre-renal
 Normal, or hyaline casts

• Acute tubular necrosis
 Dirty brown, opaque, presence of tubular casts

• Acute glomerulonephritis
 Reddish brown urine, cola-colored urine, Rbc cast

• Interstitial nephritis
 Sterile pyuria, eosinophiluria
RBC cast (glomerulonephritis)

Muddy brown granular cast (ATN)

Waxy cast

WBC cast

เอกสารประกอบการเรียนการสอนนักศึกษาแพทย์ รพ.มหาวิทยาลัยราชภัฏ
“Muddy” (Pigmented) Granular Casts
Urine indices

<table>
<thead>
<tr>
<th></th>
<th>Pre-renal</th>
<th>ATN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine sodium (U_{Na}) mEq/liter</td>
<td><20</td>
<td>>40</td>
</tr>
<tr>
<td>Urine osmolality, mosm/kg</td>
<td>>500</td>
<td><350</td>
</tr>
<tr>
<td>Fractional excretion of filtered sodium (FE_{Na})</td>
<td><1 %</td>
<td>>2%</td>
</tr>
</tbody>
</table>
\[
FE_{Na} = \frac{(U_{Na} \times P_{Cr} \times 100)}{(P_{na} \times U_{cr})}
\]

Kidney Int 2002;62:2223
Cautions of Urinary Indexes

• Samples must be collected before the use of fluid replacement, dopamine, mannitol.

• Urine must not contain glucose or contrast material

• FENA < 1% in myoglobinuria or CIN
New Biomarkers in AKI
Alternatives to Serum Creatinine

• Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL)
• Urinary Interleukin 18
• Urinary Kidney Injury Molecule 1 (KIM-1)
Radiographic studies

• Renal ultrasonography
• Plain film of abdomen
• Excretory urography (IVP)
• Renal angiography, Renal scan
• Urologic studies
• Renal biopsy
Ultrasound in Obstructive uropathy
Complications of acute oliguria

- **Cardiovascular**
 - pulmonary edema, HT, arrhythmia, pericarditis

- **Infections**
 - 30-70% of patients
 - leading of mortality
 - respiratory and UTI

- **Neurologic**
 - confusion, asterixis, seizures

- **Gastrointestinal**
 - N/V
 - GI bleed (10-30%)
 - Anemia (GI bleed, frequent blood)
Treatment of AKI

- Treatment is largely supportive in nature.
- Pharmacologic treatments under study:
 - Dopamine: no benefit
 - Atrial Natriuretic Peptide (ANP) or ANP-analogue (Anaritide): promising
 - Human Insulin like growth factor 1: no benefit
- Renal Replacement therapy remains the cornerstone of management of minority of patients with severe AKI

Nephron Clin Pract 2009;112:c222-c229
Supportive treatment

- Fluid management
- Dietary modification
- Blood pressure control
- Metabolic control
- Drug dosages
- Infection
- GI bleeding
- Anemia
Fluid management of Pre renal

• Challenge

In oliguric patients who are not volume overloaded. Infusion of 1 to 2 L of normal saline intravenous over 2 to 4-hour with close monitoring of vital signs, physical examination, and urine output.
Fluid Management for ATN

Fluid replacement should be equal to insensible loss (about 500 ml/day in afebrile patients) plus urinary and other drainage losses.
Dietary modification

- protein catabolism can be substantial (200-250 g per day) in patients with ARF
- a negative nitrogen balance may lead to malnutrition, impaired immune function, and increased risk of morbidity / mortality
- Salt < 2-4 g/day NaCl
- Potassium < 40 mEq/day
- Magnesium-containing compounds should be avoided.

เอกสารประกอบการเรียนการสอนนักศึกษาแพทย์ รพ.มหาวชิราวรรณกรชีวิต
III. Blood pressure control
IV. Metabolic control
 Phosphate restriction, Phosphate binder
 Metabolic acidosis
 Hyperkalemia
V. Drug dosages
VI. Infection
VII. GI bleeding
VIII. Anemia
Dialysis

เอกสารประกอบการเรียนการสอนนักศึกษาแพทย์ รพ.มหาสารคามราชนครชิมา
Indication for acute dialysis

A = Severe metabolic acidosis
E = Severe electrolyte imbalance (Hyperkalemia)
I = Intoxicatio
O = Volume overload
U = Severe uremia (uremic encephalopathy, Platelet dysfunction, uremic pericaditis)

Prophylaxis in hypercatabolic stage patient.
Renal Dialysis
New and Improved Techniques

• Continuous renal-replacement therapy
 - slow and controlled ultrafiltration
 - marked decrease in frequency and duration of hypotension episodes

• Bio-compatible membrane
 - improved survival (57% vs 46%)
 - recovery of renal function (64% vs 43%)
Clinical course

• Renal failure phase usually lasts between 7 and 21 days if the primary insult (ischemia, nephrotoxin) can be corrected.

• Recovery is usually heralded by an increase in urine output and a gradual reduction of BUN and Cr.
Future Directions

• Targeting inappropriate vasoreactivity
 - Atrial natriuretic factor
 - adenosine-receptor antagonists
 - phosphodiesterase inhibitors

• Decrease free radicals
 - lazaroids
 - antioxidants
Future Directions

• Ameliorate tubular obstructions
 - arginine-glycine-aspartic acid peptides

• Regenerate tubular cells
 - insulin-like growth factor I
 - epidermal growth factor
 - hepatocyte growth factor